Definition: Consider the linear system $A\mathbf{x} = \mathbf{b}$ where A is a $m \times n$ matrix and \mathbf{b} is in \mathbb{R}^m . We call the matrix A the corresponding <u>coefficient matrix</u> and the $m \times (n+1)$ matrix $[A|\mathbf{b}]$ the corresponding augmented matrix.

Example 1: Write the corresponding coefficient matrix and the corresponding augmented matrix. $\begin{array}{c}
\mathbf{A} \stackrel{\mathbf{x}}{\mathbf{x}} = \stackrel{\mathbf{b}}{\mathbf{b}} \\
\begin{bmatrix} 2 & -1 \\ 2 & 1 \\ 0 & -2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} \mathbf{z} & \mathbf{i} \\ \mathbf{z} & \mathbf{i} \\ \mathbf{0} & -2 \end{bmatrix}, \quad \begin{bmatrix} \mathbf{A} \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 2 & 1 \\ \mathbf{0} & -2 \end{bmatrix} \stackrel{\mathbf{a}}{\mathbf{x}} = \begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix}$

Example 2: Write the linear system $A\mathbf{x} = \mathbf{b}$ that has the corresponding augmented matrix given in *matrix-vector form, vector form,* and *equation form.* Use *back-substitution* to solve the linear system.

$$\begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 2 & 1 & | & 0 \\ 0 & 0 & -1 & | & 2 \end{bmatrix}$$
(1)

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{bmatrix} \stackrel{?}{x} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \quad (unitrix - vector form)$$

$$X_{1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + X_{2} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + X_{3} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \quad (vector form)$$

$$X_{1} + X_{2} + X_{3} = 1$$

$$X_{1} + X_{2} + X_{3} = 1$$

$$2x_{2} + x_{3} = 0$$

$$-X_{3} = 2$$

$$X_{1} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

$$X_{2} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

$$X_{3^{2}-2}$$

 $2X_{2^{2}}-X_{3}=2 \xrightarrow{3} X_{2}=($
 $Y_{1}=1-X_{2}-X_{3}=1-1-(-2)=2$

Note 1: The linear system in example 2 could be solved using back-substitution because the corresponding augmented matrix $[A|\mathbf{b}] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & \mathbf{p} & 2 \end{bmatrix}$ is in *row echelon form*.

Definition: A matrix is said to be in row echelon form if

1. Any rows consisting entirely of zeroes are at the bottom.

2. In each nonzero row, the first nonzero entry (called the <u>leading entry</u>) is in a column to the left of any leading entries below it.

Example 3: Which matrices (if any) are in row echelon form. If the matrix is not in row echelon form explain why not.

